

1

8116-2025

Overview of the SeaBee data
platform

2

Report

Norwegian Institute for Water Research STI

Title
Overview of the SeaBee data platform

Pages
20

Date
23.06.2025

Author(s)
James Sample, Kim Leirvik, Debhasish
Bhakta, Andrea Merlina

Topic group
Marine biology

Distribution
Open

Client(s)
NFR

Published by NIVA
Project number 200064

Abstract
SeaBee is the Norwegian national infrastructure for drone-based research,
mapping and monitoring, funded by the Research Council of Norway. This report
provides a high-level overview of the software, tools and data pipelines developed
during Phase 1 of the SeaBee project (2020 to 2025).

Keywords: SeaBee, Drones, Data processing, Remote sensing
Emneord: SeaBee, Droner, Databehandling, Fjernmåling

Serial no: 8116-2025

ISBN 978-82-577-7853-8
NIVA report
ISSN 1894-7948

This report has been
quality assured according
to NIVA’s quality system
and has been approved by:

James Sample

Project Manager

Dag Hjermann
Quality Assurer

Dag Hjermann
Research Manager

© Norwegian Institute for
Water Research. The
publication may be freely
cited with attribution.

www.niva.no

3

Table of contents
1 Introduction __ 5

2 Scope and aims ___ 5

3 Hosting and data centre __ 6

4 Computing environment ___ 7

4.1 Cloud architecture and resources __ 7
4.2 Code repositories and documentation __ 8
4.3 Development and deployment cycle ___ 8

5 Platform components ___ 8

5.1 Storage __ 9
5.2 Orthorectification and georeferencing __ 10
5.3 Image classification using machine learning __ 12
5.4 Annotation ___ 13
5.5 Data publishing, sharing and visualisation __ 13
5.6 JupyterHub and Python packages___ 15

6 Automated data pipelines ___ 17

6.1 Overview of pipelines __ 17
6.2 Pipeline development cycle __ 17
6.3 Specification for data upload __ 18

7 Platform statistics __ 20

8 Future development ___ 21

9 Conclusion ___ 21

4

Abbreviations
AI Artificial intelligence
API Application programming interface
CI Continuous integration
CNN Convolutional Neural Network
CPU Central processing unit
DSM Digital surface model
DTM Digital terrain model
FAIR Findable, accessible, interoperable, reusable
GB Gigabyte
GCP Ground control point
GIS Geographic information systems
GPS Global positioning system
GPU General processing unit
HSI Hyperspectral imagery
IDE Interactive development environment
IMU Inertial measurement unit
LiDAR Light Detection and Ranging
ML Machine learning
MSI Multispectral imagery
NFR Research council of Norway (Norges forskningsråd)
NINA Norwegian institute for nature research
NIRD National infrastructure for research data
NIVA Norwegian institute for water research
NR Norwegian computing centre (Norsk regnesentral)
NTNU Norwegian university of science and technology
ODM Open drone map
PUE Power usage effectiveness
RGB Red, green, blue
RTK Real time kinematic
TB Terabyte
UI User interface
VM Virtual machine
WFS Web feature service
WMS Web mapping service
WUE Water usage effectiveness

5

1 Introduction
SeaBee is the Norwegian national infrastructure for drone-based research, mapping and monitoring. The
project is funded by the Research Council of Norway (NFR; project number 296478) and aims to establish
a centre for drone-based coastal research, including mapping of habitats, monitoring animal
communities, and assessing anthropogenic impacts.

The SeaBee project has two phases: Phase I (2020 – 2025) is funded directly by NFR to establish the
infrastructure, including purchasing hardware, training drone pilots, and developing protocols and
software for data processing; Phase II (2025 – 2030) is an operational phase where SeaBee services will
be made available to other projects and user groups.

This document provides an overview of the software, tools and data pipelines established during Phase I
of the project. These are collectively referred to as the “SeaBee data platform”, which aims to provide
researchers with an end-to-end solution for processing, analysing and sharing data collected by drones.

2 Scope and aims
The SeaBee data platform is primarily designed to process aerial imagery collected by flying drones.
SeaBee drones are equipped with a variety of sensors, the most common being RGB (red, green, blue) and
multispectral (MSI) cameras. Less commonly, dedicated thermal (infrared) cameras may be used for
population surveys (e.g. for seabirds or seals). Raw data from these sensor types typically comprises large
numbers (hundreds to thousands) of geotagged, overlapping images, which must be “stitched” together
to create an orthophoto mosaic prior to further processing.

Other Seabee drones are equipped with hyperspectral (HSI) cameras, which have lower resolution than
RGB or MSI sensors but gather more detailed spectral information. These sensors use line-scanning
(sometimes called “push-broom” technique) to collect data, and the raw output is a series of strips or
swathes, rather than individual camera frames. For this reason, the data processing pipeline for HSI data
is separate from the pipeline for RGB and MSI data.

A core aim of the SeaBee platform is to allow drone pilots to upload raw data directly from the field and
have it processed, analysed and published online within a matter of hours. Although SeaBee does not
explicitly aim to provide results in “real-time”, fast and efficient processing is valuable because it allows
pilots to review results in the field and adjust flight settings accordingly.

In addition to automated pipelines, the SeaBee platform aims to make SeaBee data FAIR (Findable,
Accessible, Interoperable and Reusable) by providing researchers with tools for visualising, sharing and
analysing SeaBee data products. Users can include SeaBee data in their own workflows or build third-party
applications that consume SeaBee services. The SeaBee platform provides a variety of tools targeted
towards different user groups:

• External users can search and browse SeaBee datasets online, share links to specific datasets,
and use SeaBee services in their own applications (such as desktop GIS).

• Registered users have additional options to download raw data and access web GIS interfaces
where they can create customised, sharable maps comprising multiple data layers. Registration

https://seabee.no/

6

is free and without obligation. Registered users can also request access to the SeaBee data portal,
where they can upload their own drone data for automatic processing.

• Advanced users have access to sophisticated data analysis tools and computational resources
allocated on the SeaBee platform itself. These users can write code to analyse and visualise
SeaBee data, without having to install or download anything locally. Advanced users can share
their code on the platform, create new platform components, and develop entirely new
processing pipelines.

A secondary goal of the SeaBee platform is to host ancillary datasets associated with drone flying
operations. These include “ground truth” datasets collected by field staff for training machine learning
algorithms, as well as data from other kinds of drone (boats, submersibles, etc.) and sensor (e.g. LiDAR).
The range of datasets supported by the platform is expected to expand over time in response to user and
project needs.

Drone hardware, artificial intelligence (AI) and machine learning (ML) are all developing rapidly. A core
goal of the SeaBee project is therefore to provide a flexible and extensible data platform that can adapt
to accommodate new data sources (drones and sensors) and algorithms as they become available.

3 Hosting and data centre
The SeaBee data platform is hosted by Sigma2 as part of Norway’s National Infrastructure for Research
Data (NIRD). NIRD provides data storage and cloud computing infrastructure specifically tailored to the
scientific community. The SeaBee platform runs on NIRD’s Data Peak service, with daily backups to the
Data Lake.

All SeaBee datasets are stored in Sigma2’s data centre at Lefdal Mine in Nordfjord. Formerly one of the
largest olivine mines in the world, it was converted to a data centre in 2018 and SeaBee data migrated at
the start of 2023. The centre comprises 6 levels with a total usable space of 120 000 m2 (Figure 1).

Figure 1: Lefdal Mine Data Centre in Nordfjord. Images © Sigma2.

https://www.sigma2.no/
https://www.sigma2.no/service/nird-service-platform
https://www.sigma2.no/service/nird-service-platform
https://www.sigma2.no/service/nird-data-peak
https://www.sigma2.no/service/nird-data-lake
https://www.lefdalmine.com/

7

Lefdal Mine is one of the greenest data centres in Europe, with a strong commitment to environmental
stewardship and sustainability. The facility operates on renewable energy from a nearby hydroelectric
plant and takes cooling water from deep in the neighbouring fjord. This ensures a minimal carbon
footprint and eliminates the need for energy-intensive evaporative cooling. As a result, the centre
achieves a Water Usage Effectiveness (WUE) of zero and a Power Usage Effectiveness (PUE) of 1.15,
making it one of the most efficient data centres in the world. Furthermore, by reusing infrastructure from
a disused mine, construction costs have been kept low and the visual impact minimal.

A core aim of SeaBee is to promote better environmental management. Lefdal Mine’s focus on green
energy and sustainable solutions therefore makes it an ideal location to host the SeaBee data platform.

4 Computing environment

4.1 Cloud architecture and resources

The SeaBee data platform operates within a dedicated Kubernetes namespace on NIRD. Kubernetes is an
open-source system for automating the deployment, scaling, and management of containerised
applications. It offers an industry-standard approach for building cloud-based infrastructure in a provider-
agnostic manner.

Sigma2 allocates resources for the SeaBee platform to the Kubernetes namespace. These resources are
adjusted to match platform workloads. As of March 2025, the SeaBee namespace has access to 125 TB of
storage (plus backup), 1 TB of memory, 110 CPUs (AMD EPYC 7713), and 3 GPUs (Tesla V100). Within the
namespace, Kubernetes sets resource limits for different platform components.

Platform components are containerised using Docker. Docker allows developers to package applications
and all their dependencies into standardized "units" for software development, ensuring consistency
across multiple environments. Docker strikes a balance between deploying applications on a single host
and using virtual machines (VMs). Unlike VMs, which include a full operating system and can be resource-
intensive, Docker containers share the host system's kernel and run as isolated processes. This makes
them more lightweight and efficient while still offering the benefits of isolation and consistency across
different environments.

Docker distinguishes between images and containers. Images are read-only templates that contain the
instructions for creating a container. They include everything needed to run an application, such as the
code, runtime, libraries, and dependencies. Containers are runnable instances of images. They are created
from images and can be started, stopped, moved, and deleted. Each container is isolated from others,
providing a secure environment for running applications.

Each component of the SeaBee data platform has an associated deployment, handled using Helm or
Kustomize. These deployments define containers orchestrated by Kubernetes. Kubernetes monitors the
containers, balancing workloads and checking resource consumption. Containers with issues are
automatically restarted, while those consuming excessive resources are shut down to prevent impact on
other platform components.

Together, Docker and Kubernetes provide a robust and widely used approach for building cloud-based
computational infrastructure.

https://kubernetes.io/
https://www.docker.com/
https://helm.sh/
https://kustomize.io/

8

4.2 Code repositories and documentation

SeaBee code is hosted online as part of the SeaBee GitHub Organisation. As far as possible, SeaBee code
is open-source and made available to the public under a GNU General Public License v3.0 (GNU GPLv3).
Technical documentation for the platform is also available online, including descriptions of platform
components, common workflows, and SeaBee data standards.

Users with specific technical problems (bugs etc.) are encouraged to create GitHub Issues in the
appropriate SeaBee repository (e.g. here). More general questions or discussions can use GitHub
Discussions instead.

4.3 Development and deployment cycle

Core components of the SeaBee data platform are deployed using Continuous Integration (CI) via GitHub
Actions and Workflows. When code changes are committed to the ‘main’ branch of a SeaBee repository,
a GitHub Workflow is typically triggered to rebuild the Docker image associated with that component (see
Section 4.1). The new image is then automatically deployed by Kubernetes as a container, replacing older
instances with the updated version.

CI streamlines the process of updating and maintaining complex data pipelines. For instance, automatic
pipelines on the SeaBee platform generally run every hour. These pipelines can be updated seamlessly
without interrupting the schedule by simply pushing code changes to GitHub and waiting for the CI
workflows to complete. If the CI workflow is running when the automatic pipeline starts, the platform will
continue to run the previous version of the code from the old Docker images. Once the CI workflow finishes
and a new image becomes available, the updated code will run automatically next time the pipeline starts.

5 Platform components
Core components of the SeaBee data platform are illustrated in Figure 2. The large, dashed outline
labelled “Sigma2” identifies the main components deployed within SeaBee’s Kubernetes namespace on
Sigma2’s NIRD platform.

The SeaBee data platform can be considered as five distinct workflows, with a sixth component – the
SeaBee JupyterHub – linking them together:

• The storage workflow provides tools to access SeaBee datasets stored on NIRD’s Data Peak
infrastructure.

• The orthorectification workflow comprises tools for stitching and mosaicking raw data from
flying drones to create orthophotos, Digital Surface Models (DSMs) and other primary data
products.

• The machine learning workflow applies pre-trained ML algorithms to classify orthophotos,
creating secondary data products such as habitat maps, population counts, etc.

• The annotation workflow helps ecologists label objects or features of interest in orthophotos.
Labelled datasets form the basis for training new ML algorithms, which are then deployed in the
ML workflow.

https://github.com/SeaBee-no
https://choosealicense.com/licenses/gpl-3.0/
https://seabee-no.github.io/documentation/
https://github.com/SeaBee-no/documentation/issues
https://github.com/SeaBee-no/documentation/discussions

9

• The visualisation workflow comprises the components needed to make SeaBee data products
available to external users. These include web GIS interfaces, Web Mapping Services (WMSs), and
tools for searching and exploring datasets and metadata.

• The SeaBee JupyterHub provides an Interactive Development Environment (IDE) connecting
workflows together. Advanced users and system administrators can login to the JupyterHub and
develop pipelines to move data from one part of the platform to the next. Automated pipelines
use the same computational environment as the JupyterHub, so components developed and
tested on the Hub can be easily deployed on a schedule to execute pre-defined tasks.

Figure 2: Core components and “workflows” on the SeaBee data platform.

5.1 Storage

The SeaBee platform offers a unified storage solution for all data, complete with backup, and provides
different entry points tailored to different user groups.

All SeaBee data is stored on a volume hosted by NIRD’s Data Peak service. This volume is mounted directly
into HOME directories on the JupyterHub as a folder named ‘shared-seabee-ns9879k’, allowing users
to easily access SeaBee data as part of their native file system (Figure 3a).

The NIRD data volume is also exposed externally via MinIO, an open-source object storage solution that
provides an Amazon Web Services S3-compatible API and supports all core S3 features. SeaBee’s MinIO

https://www.sigma2.no/service/nird-data-peak
https://min.io/

10

includes an online user interface (UI) where users can browse the SeaBee file system and upload/download
files (Figure 3b). Additionally, it exposes an S3 storage endpoint (https://storage.seabee.sigma2.no) that
can be accessed by any S3-compatible client. Figure 3c shows the desktop application RcloneBrowser
using this endpoint to access SeaBee data from an external machine, while Figure 3d demonstrates
programmatic data access using the same endpoint from Python (with seabeepy; see Section Error!
Reference source not found.).

Figure 3: Four different options to access the same SeaBee data. (a) JupyterHub file browser; (b) MinIO
web interface; (c) RcloneBrowser from an external machine; (d) Programmatically via Python using
seabeepy.

Different storage entry points are recommended for different use cases. For instance, the MinIO web UI
provides a convenient way to browse SeaBee data and upload or download small to medium-sized files.
However, since data transfer occurs over a standard HTTP connection, it is not ideal for transferring large
data volumes. By contrast, clients such as Rclone and RcloneBrowser are specifically designed for
transferring large volumes of data to and from cloud storage. Unlike standard HTTP data transfers, Rclone
tracks progress and can restart if the network connection is interrupted. It is therefore the recommended
option for users needing to transfer large volumes of data to/from the SeaBee platform – especially when
transferring data directly from the field, where network connectivity can be unreliable.

5.2 Orthorectification and georeferencing

Raw data collected by drones requires processing to create fully georeferenced mosaic images for data
analysis. SeaBee’s RGB, MSI and thermal sensors capture numerous overlapping images, and the process
of combining these into mosaics is called orthorectification. On the SeaBee data platform,
orthorectification is performed using Open Drone Map (ODM), an open-source software ecosystem for

https://minio.seabee.sigma2.no/
https://storage.seabee.sigma2.no/
https://kapitainsky.github.io/RcloneBrowser/
https://github.com/SeaBee-no/seabeepy
https://rclone.org/
https://kapitainsky.github.io/RcloneBrowser/

11

processing and analyzing aerial drone data. However, ODM does not support georeferencing data from
HSI cameras, because SeaBee’s HSI sensors collect data through line-scanning rather than single images.
Georeferencing of HSI data is therefore managed on the platform by a separate, custom workflow
developed by the Norwegian University of Science and Technology (NTNU; see Section 5.6).

Figure 4: NodeODM task queue showing four missions being processed in parallel.

ODM is deployed on the SeaBee platform using NodeODM and pyodm. NodeODM provides an Application
Programming Interface (API) that is used by pyodm to pass drone data to and from the underlying image
processing engine. In order to run efficiently, ODM is allocated a significant proportion of the
computational resources from the SeaBee Kubernetes namespace. NodeODM maintains a task queue of
active jobs and is capable of processing data from multiple drone missions simultaneously (Figure 4).

Key data products generated by ODM are orthophotos (georeferenced image mosaics) and DSMs (Figure
5). Secondary outputs include point clouds, meshes and texture models.

https://opendronemap.org/nodeodm/
https://opendronemap.org/pyodm/

12

Figure 5: DSM (left) and orthophoto (right) created by ODM from an RGB dataset.

5.3 Image classification using machine learning

The SeaBee data platform uses ML models developed and tested by Norsk Regnesentral (NR). The models
are primarily Convolutional Neural Networks (CNNs) implemented in PyTorch and trained using supervised
learning with labelled data created by SeaBee ecologists (Section 5.4).

ML models are trained and tested by NR experts using their own hardware. Once trained, the models are
deployed "in production" on the SeaBee platform to classify new data. NR delivers models as versioned zip
archives and uploads them to SeaBee storage via MinIO. Different models are provided for image
segmentation (e.g. habitat classification) and object detection (e.g. counting seabirds). SeaBee’s
automated pipelines are designed to select the appropriate model based on the classification task.

Outputs from ML models for segmentation (e.g. habitat mapping) are typically raster images showing
predicted habitat classes and confidence scores. For object detection (e.g. seabird mapping), the models
produce vector datasets with bounding boxes identifying the location of each individual, along with
attribute information describing the predicted class (species etc.) and confidence score (Figure 6).

Figure 6: Example ML output for seabird detection (left) and habitat mapping (right).

https://pytorch.org/

13

5.4 Annotation

Training new ML models using supervised learning requires labelled orthophotos identifying features of
interest, such as habitat types or bird/mammal species. Orthophotos created by ODM are added to the
SeaBee GeoServer (Section 5.5) and made available as WMSs. These can be integrated into desktop GIS
or other web applications and annotated by domain specialists.

Annotation of seabird datasets is performed outside the SeaBee platform using an application developed
by the Norwegian Institute for Nature Research (NINA). This application uses SeaBee WMSs as base layers,
allowing users to identify bird locations and tag them with information describing the species, age and
activity (nesting, standing, flying etc.) of each individual.

Habitat mapping annotation is conducted by the Norwegian Institute for Water Research (NIVA) and
initially utilizes the Image Analyst extension for ArcGIS Pro. NIVA ecologists draw polygons to define the
extent of different marine vegetation species and tag each polygon with descriptive information. Since
Image Analyst supports hierarchical annotation, users can assign labels at species level where possible, or
use coarser aggregations (e.g. genus) when species identification is ambiguous. Vector annotations from
Image Analyst are uploaded to SeaBee storage via MinIO and processed on the JupyterHub to create
standardised geopackages. These geopackages are then used by NR to train new ML models. Details of
the annotation workflow for habitats are available in the SeaBee documentation.

5.5 Data publishing, sharing and visualisation

SeaBee data products are made available online using GeoServer and GeoNode. GeoServer is an open-
source software server written in Java that allows users to share and edit geospatial data, while GeoNode
is an open-source content management system for web GIS.

Data products from the orthorectification and ML workflows (orthophotos, habitat maps, seabird counts
etc.) are first uploaded to GeoServer, where they become available as Web Mapping Services (WMSs) and
Web Feature Services (WFSs). The GeoNode consumes these services and publishes them to a public web
GIS interface where they can be searched and explored. The default GeoNode interface is shown in Figure
7 and presents users with a list of SeaBee layers that can be explored interactively, together with basic
tools for searching and filtering based on metadata attributes.

https://github.com/SeaBee-no/annotation/blob/main/code/annotation_workflow.ipynb
https://seabee-no.github.io/documentation/annotation.html
https://geoserver.org/
https://geonode.org/
https://geonode.seabee.sigma2.no/catalogue/#/search/?f=dataset

14

Figure 7: Standard GeoNode interface showing available data layers.

To enhance the user experience, the SeaBee data platform also offers a custom web GIS interface (Figure
8) built on top of GeoNode using GeoDjango, a Python framework for geospatial web applications. The
main application window shows an interactive map of SeaBee missions, while a sidebar lists missions
within the current view extent and provides tools for searching based on mission type, date range, and
more.

Figure 8: Main components of the SeaBee data exploration application.

https://geonode.seabee.sigma2.no/
https://docs.djangoproject.com/en/5.1/ref/contrib/gis/

15

Clicking on a mission in the sidebar displays a popup with additional details and options (Figure 9). Users
can zoom to the location of the mission and overlay the orthophoto and ML results (if available) on the
basemap for more detailed investigation. Registered users can also download the orthophoto and ML
results to their local machine for further analysis using desktop GIS. Additionally, buttons are provided to
display the WMS parameters for the mission on GeoServer and to create a direct, shareable link if desired.

Figure 9: Mission details popup within the SeaBee data exploration application.

Registered users can use GeoNode to create Maps and GeoStories. GeoNode Maps are simple web GIS
applications where users can create custom data visualisations by combining multiple SeaBee layers and
other external datasets. Users can control layer styling and transparency, and enable various tools for
dataset comparison, such as layer toggles and sliders. Maps can be saved to a user’s GeoNode account
and shared with collaborators, if desired.

GeoStories (the open-source equivalent of ESRI’s StoryMaps) allow users to combine text, interactive
maps, and other multimedia (images, videos etc.) to create interactive articles and reports. Like GeoNode
Maps, GeoStories are saved to users’ accounts and can be shared with others or made public on the
platform.

5.6 JupyterHub and Python packages

JupyterHub is an open-source platform primarily designed to allow multiple users to access the
JupyterLab IDE on a shared server, such as cloud infrastructure. However, JupyterHub can also deploy
other web-based IDEs, such as R-Studio Server and Code Server (a browser-based implementation of VS
Code).

The SeaBee platform leverages JupyterHub to provide advanced users with a comprehensive development
environment customised for remote sensing and geospatial analysis. Users of the Hub can choose

https://geonode.seabee.sigma2.no/catalogue/#/search/?f=map
https://geonode.seabee.sigma2.no/catalogue/#/search/?f=geostory
https://jupyter.org/hub
https://jupyter.org/
https://posit.co/products/open-source/rstudio-server/
https://github.com/coder/code-server
https://code.visualstudio.com/
https://code.visualstudio.com/

16

between JupyterLab, R-Studio Server or Code Server according to their preferences, or switch between
them for different tasks. JupyterLab is familiar to data scientists working with Python, whereas R-Studio
is generally preferred by SeaBee ecologists working with R. Code Server/VS Code is often the choice for
software engineers seeking a more comprehensive development environment.

Regardless of the chosen IDE, users have access to an identical file system and computational resources.
The SeaBee platform offers three different JupyterHubs with varying specifications:

• Standard. 1 CPU, 1 GB memory. The default machine, suitable for basic data analysis, annotation,
simple statistics, and visualisation. Also suitable for deploying orthorectification tasks to ODM.

• High memory. 4 CPUs, 32 GB memory. Suitable for raster processing, such as manipulating image
mosaics.

• GPU-enabled. 4 CPUs, 16 GB memory, 1 Tesla V100-PCIE-16GB GPU. Suitable for machine
learning.

Because data structures and file paths are identical across Hubs, users can switch between machines with
different resource allocations as needed. This allows workflows to be developed on smaller machines and
then scaled up to larger machines once tested.

All three JupyterHubs provide users with access to an Ubuntu (Linux) machine and a consistent,
customised computing environment for Python, R and Julia. Most SeaBee workflows are coded in Python,
but a comprehensive set of R packages is also included for ecologists analysing SeaBee datasets directly
on the platform. Julia is not extensively used at present but has potential for future use.

The JupyterHub’s Python environment includes all the packages necessary to build data pipelines
connecting the different “workflows” illustrated on Figure 2. This includes standard geospatial libraries
installed at the level of the operating system (GDAL/OGR, PROJ, etc.) along with their corresponding
Python bindings (rasterio/fiona, pyproj, etc.). Additionally, the environment includes three Python
packages developed specifically for SeaBee:

• seabeepy: The main Python package supporting workflows on the SeaBee data platform. It
comprises five modules, each supporting one of the main workflows illustrated on Figure 2:

o The ‘storage’ module provides functions for connecting to SeaBee’s MinIO storage and
transferring data programmatically (Section 5.1 and Figure 3b).

o The ‘ortho’ module contains functions associated with the orthorectification workflow,
including those needed to submit tasks to NodeODM (Section 5.2).

o The ‘ml’ module contains functions for interacting with NR’s machine learning API (see
below and Section 5.3).

o The ‘anno’ module contains functions for standardising annotation from ArcGIS Pro’s
Image Analyst and building geopackages for training ML models (Section 5.4).

o The ‘geo’ module contains functions for standardising geospatial data products created
by other workflows and publishing them to GeoServer and GeoNode (Section 5.5).

• seabee-ai: A Python package created by NR to streamline the process of deploying ML models. It
provides a command line tool with an API for running NR’s models with SeaBee datasets.

https://gdal.org/en/stable/
https://proj.org/en/stable/
https://rasterio.readthedocs.io/en/stable/
https://github.com/Toblerity/Fiona
https://pyproj4.github.io/pyproj/stable/
https://github.com/SeaBee-no/seabeepy

17

• gref4hsi: A Python package developed by NTNU for georeferencing of push-broom hyperspectral
imagery, including ray-intersection, orthorectification, and co-registration. It is a core component
of the pipeline for processing HSI data.

6 Automated data pipelines

6.1 Overview of pipelines

At present, there are three automated data pipelines running on the SeaBee data platform:

• The orthorectification pipeline for RGB and MSI data.

• The georeferencing pipeline for HSI data.

• The image classification pipeline for RGB and MSI orthophotos.

All three pipelines run every hour. The HSI pipeline is independent of the others, whereas the RGB and
MSI pipeline for image classification runs sequentially after the orthorectification pipeline has completed.
If any pipeline takes longer than one hour, the next run will not start until the previous one has finished
(or failed with some error). Output from each hourly pipeline run is written to log files on MinIO. These are
kept for 24 hours and then overwritten.

6.2 Pipeline development cycle

SeaBee data pipelines are initially developed by advanced users or platform administrators working on the
JupyterHub. Since the software environment for pipelines is identical to that on JupyterHub, code
developed and tested on the Hub can be seamlessly deployed to run on a schedule as a pipeline.

JupyterHub users have the flexibility to develop pipelines in any manner they prefer. However, so far,
pipelines have primarily been developed and tested as Jupyter notebooks. These notebooks use SeaBee-
specific Python packages like seabeepy, seabee-ai and gref4hsi (Section 5.6) to move data between the
main SeaBee “workflows” (Figure 2) and perform intermediate processing.

Each notebook begins by scanning the file system for new datasets and reading settings from a standard
plain text configuration file called ‘config.seabee.yaml’. Notebooks are developed and tested until
running them manually via JupyterHub performs the desired processing reliably and efficiently. Once the
developer is satisfied, the latest changes are pushed to GitHub and the notebook added to a list of
notebooks scheduled to be executed every hour by the pipeline.

Each pipeline run starts by cloning the latest versions of the notebooks and core packages, such
as seabeepy, from GitHub. This ensures that pipelines are always running the most up-to-date code and
makes it easy to update pipelines simply by modifying the relevant notebook and pushing changes to
GitHub.

https://github.com/havardlovas/gref4hsi

18

6.3 Specification for data upload

6.3.1. Data structure

SeaBee’s automated processing pipelines require raw data to be uploaded in a standard format. Data from
each mission must be gathered into a single folder containing a pre-defined subfolder structure and a
plain text configuration file called ‘config.seabee.yaml’. The platform does not enforce strict
requirements for naming mission folders, because different pilots and organisations prefer to use their
own conventions, but the contents of each mission folder must be standardised.

For RGB and MSI missions, the required subfolder structure is as follows:

unique_mission_folder_name/

├─ dem/

├─ gcp/

├─ ground-truth/

├─ images/

├─ orthophoto/

├─ other/

├─ report/

├─ texturing/

config.seabee.yaml

Note that the only mandatory components are the ‘images’ subfolder, which contains the raw images,
and ‘config.seabee.yaml’. A typical example of data uploaded for a RGB or MSI mission is therefore:

unique_mission_folder_name/

├─ images/

│ ├─ img_001.jpg

│ ├─ img_002.jpg

│ ├─ img_003.jpg

config.seabee.yaml

The purpose of each subfolder or file is as follows:

• config.seabee.yaml (required). A file containing flight metadata and additional settings to
control the processing workflow (Section 6.3.2).

• images (required). Images from a single flight i.e. images that can be orthorectified to produce
a single mosaic.

• dem (optional). Contains elevation datasets generated during orthorectification (DSMs and
DTMs). This folder and its contents are generated automatically if orthorectification is performed
on the platform using ODM. However, it can also be provided explicitly if orthorectification has
been done elsewhere (e.g. manually on a local machine).

• gcp (optional). Folder containing ground control points (GCPs) in a standard text format. Most
SeaBee missions are flown using Real Time Kinematic (RTK) positioning, in which case GCPs are
not usually necessary and the folder can be omitted.

• ground_truth (optional). Ground truth data collected by field ecologists using traditional
survey methods, if available.

19

• orthophoto (optional). Georeferenced mosaic images. Typically a single, multi-band GeoTiff
with standardised band order and metadata. This folder and its contents are generated
automatically if orthorectification is performed on the platform using ODM. However, it can also
be provided explicitly if orthorectification has been done elsewhere (e.g. manually on a local
machine).

• report (optional). Folder containing the PDF report describing results from the
orthorectification process, plus any associated logs (e.g. text files and JSON). This folder and its
contents are generated automatically if orthorectification is performed on the platform using
ODM. However, it can also be provided explicitly if orthorectification has been done elsewhere
(e.g. manually on a local machine).

• texturing (optional). Texture models generated during orthorectification. This folder and its
contents are generated automatically if orthorectification is performed on the platform using
ODM. However, it can also be provided explicitly if orthorectification has been done elsewhere
(e.g. manually on a local machine).

• other (optional). Anything not included in the other folders.

6.3.2. Configuration file

Each mission folder must contain a file named ‘config.seabee.yaml’, which contains flight metadata
and settings/commands to control data processing. A minimal example with the 9 mandatory attributes
is shown in Figure 10.

Most of the mandatory attributes provide basic mission metadata, such as the datetime, responsible
organisation and SeaBee theme (seabirds, habitats etc.). In addition, the attributes mosaic,
classify and publish are Boolean values that allow pilots to control which parts of the processing
pipeline run on their data.

The nfiles attribute is mandatory because it is used by the platform to determine whether raw data
upload has completed successfully before starting any further processing. This is especially important
when bulk-uploading data for large numbers of missions directly from the field, where network
connectivity can be patchy. Before attempting to mosaic any images using ODM, the pipeline will first
check that the number of files in the images subfolder matches the nfiles attribute in the
configuration file. If it does, it is assumed that upload is complete and the flight is ready to be processed;
if it does not, the flight is skipped and checked again later.

Figure 10: Mandatory attributes in the ‘config.seabee.yaml’ configuration file.

In addition to the mandatory attributes, config.seabee.yaml can contain optional information to
control subsequent processing and add extra metadata. A complete list of currently supported attributes
is shown in Figure 11. Pilots can use the configuration file to pass settings to ODM for use during

20

orthorectification, or to specify the version of the ML model used for image classification. It is also
possible specify the data licence to use when results are published to the GeoNode (if publish is true).

Figure 11: Complete list of attributes supported by ‘config.seabee.yaml’.

If optional settings are omitted from the configuration file, default values are used instead. By default,
the platform will use the latest version of the ML model, and settings for ODM that are designed to achieve
adequate results over a broad range of mission types. Unless otherwise specified, all SeaBee datasets are
published under a CC-BY-4 Creative Commons licence, which permits sharing and adapting the data as
long as attribution is provided (including for commercial purposes).

7 Platform statistics
As of March 2025, the SeaBee platform hosts approximately 100 TB of active data stored on NIRD’s Data
Peak service (with the same amount backed up to the Data Lake). These data come from 1857 aerial drone
missions, of which 1572 are from seabird surveys (covering ~114 km2), 254 are habitat mapping (covering
~95 km2), and 31 are for assessing water quality (covering ~0.1 km2). Most of the datasets so far have
been generated by the RGB and MSI data pipelines, but usage of the HSI pipeline has increased
considerably during recent months. It is anticipated that the annual seabird survey conducted by NINA in
late spring 2025 will generate another 30 to 50 TB of data.

https://creativecommons.org/licenses/by/4.0/

21

8 Future development
The SeaBee data platform is continuously evolving, with new components added regularly. Recently,
SeaBee acquired a green Light Detection and Ranging (LiDAR) sensor, and preliminary work has begun to
develop a LiDAR data pipeline, including 3D visualization of categorised point clouds. Additionally, a
second workflow is under development to implement “direct georeferencing” of RGB and MSI imagery.
Direct georeferencing aims to geolocate individual images without the need for computationally
demanding orthorectification (e.g. using ODM). Although direct georeferencing is currently less accurate
than traditional orthorectification, traditional methods often fail over open water due to the difficulty of
identifying common features across multiple images. As drone Inertial Measurement Units (IMUs)
improve, direct georeferencing is becoming more feasible. A robust pipeline for direct georeferencing will
enable SeaBee to explore areas further offshore, which is essential for surveying large marine mammal
species, such as whales.

9 Conclusion
The SeaBee data platform is fully operational, providing Norwegian researchers with efficient and scalable
processing of data collected by flying drones. It offers automated workflows for processing data from RGB,
multispectral, and hyperspectral sensors, creating an end-to-end pipeline from raw data upload to online
publishing of data products, including orthophotos and machine learning-based image classifications.

SeaBee data products adhere to the FAIR principles (Findable, Accessible, Interoperable, and Reusable)
and are accessible via the SeaBee geoportal. This portal allows users to search and explore SeaBee data,
download processed datasets, and develop their own applications using SeaBee data. Additionally, the
platform provides powerful tools for advanced users to analyse SeaBee data in the cloud using Python or
R.

We believe the SeaBee platform is the first of its kind and it has already proven its value by streamlining
several large-scale ecological surveys, including the annual seabird population studies conducted by
NINA. We hope SeaBee will become a vital component of Norway’s national research infrastructure and
significantly contribute to sustainable management of the coastal zone.

https://geonode.seabee.sigma2.no/

22

The Norwegian Institute for Water Research
We are Norway's premier research institute in the fields of water and the environment. We are experts on ecosystems in
both freshwater and marine environments, from mountains, lakes and rivers, to fjords, coasts and oceans. We develop
science-based knowledge and solutions to challenges related to the interaction between water and climate, the
environment, nature, people, resources and society.

